Approximation by rational modules in Sobolev and Lipschitz norms
نویسندگان
چکیده
منابع مشابه
Approximation in Sobolev Spaces by Kernel Expansions
For interpolation of smooth functions by smooth kernels having an expansion into eigenfunctions (e.g. on the circle, the sphere, and the torus), good results including error bounds are known, provided that the smoothness of the function is closely related to that of the kernel. The latter fact is usually quantified by the requirement that the function should lie in the “native” Hilbert space of...
متن کاملHomotopy approximation of modules
Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.
متن کاملApproximation by Rational Functions in
The denseness of rational functions with prescribed poles in the Hardy space and disk algebra is considered. Notations. C complex plane D unit disk fz : jzj < 1g Tunit circle fz : jzj = 1g H p Hardy space of analytic functions on D kfk 1 := supfjf(z)j : z 2 D g, the H 1 norm A(D) disk algebra of functions analytic on D and continuous on D P n set of polynomials of degree at most n
متن کاملk-Lipschitz strict triangular norms
This paper deals with Lipschitzian t-norms. A partial answer to an open problem of Alsina, Frank and Schweizer is given with regard to strict t-norms with smooth additive generators. A new notion of local Lipschitzianity for arbitrary tnorms is introduced. Some remarkable examples of non-Lipschitzian continuous triangular norms are provided.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1984
ISSN: 0022-1236
DOI: 10.1016/0022-1236(84)90043-0